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I. INTRODUCTION 

Nowadays, sustainability becomes a general requirement in engineering and sciences, including in path planning technologies. 

Path planning is very important for an object, which needs to generate motion, such as a vehicle robot, an arm robot manipulator, 

a missile, a ship, a submarine, and an aircraft. It is a process to design a feasible path that becomes a trace for vehicles or robots.  

One of the advantages of using a Bezier curve for path planning is its adaptability to change the control points. It has been widely 

used as a manufacturing path in additive manufacturing [1,2,3], vehicle route path of an aircraft [4], and vessel path motion [5].  

The goal of sustainability in the manufacturing system is still in the way of the process. In the future, additive manufacturing will 

be developed into sustainable manufacturing via path planning technologies [1]. Thus, research on the path planning methodologies 

that address a sustainability goal is highly important.  

Sustainable manufacturing refers to applying an approach for manufacturing that has minimal harm to environments and 

mitigated bad impacts on human health and nature [6]. For the robots and vehicle systems, which commonly operate in obstacle 

environments, it is necessary to achieve the safety goal by generating a collision-free path. Collision avoidance strategies become 

an important issue in path planning.  The concept of collision avoidance dynamic critical area for vessel path planning was 

introduced in [5]. Collision avoidance for human-robot interactions in adaptive manufacturing was presented in [3]. Saeed et al. 

[7] proposed a boundary node method to solve mobile robot path planning in static obstacle environments. Kala et al. [8] applied 

multi-neuron heuristic search to solve the path planning in the static obstacle environment.  

The GA as one of the evolutionary methods has been applied to solve the point-to-point path planning. Linquan et al. [9] 

proposed to use GA for path planning of robot soccer systems in a dynamic environment.  Choi et al. [10] presented two-path 

planning algorithms based on Bezier curves for autonomous vehicles with waypoints and corridor constraints. Lil et al. 11] assumed 

the existence of an obstacle-avoiding polyline path and replaced the polyline path with a G2 cubic spline curve to avoid the 

obstacles.  

A B S T R AC T 

 

A collision-free route is very important for achieving sustainability in a manufacturing process and vehicle robot trajectories that commonly operate in a 

hazardous environment surrounded by obstacles. This paper presents a collision avoidance algorithm using a Bezier curve as a route path. The route planning 

is modeled as an optimization problem with the objective optimization is to minimize the route length considering an avoiding collision constraint. The collision-

avoidance algorithm based on curve point analysis is developed incorporating metaheuristic optimizations, namely a Genetic Algorithm (GA) and a Grey Wolf 

Optimizer (GWO). In the collision avoidance algorithm, checking of curve point's position is important to evaluate the individual fitness value. The curve points 

are analyzed in such a way so that only the paths which are outside the obstacle area are selected. In this case, besides the minimum length as a fitness function, 

the constraint is the position of curve points from an obstacle. With the help of meta-heuristic optimization, the developed collision avoidance algorithm has 

been applied successfully to different types of obstacle geometries. The optimization problem is converted to the maximization problem so that the highest 

fitness value is used to measure the performance of the GA and GWO. In general, results show that the GWO outperforms the GA, where it exhibits the highest 

fitness value. However, the GA has shown better performance for the narrow passage problem than that of the GWO. Thus, for future research, implementing 

the hybrid technique combining the GA and the GWO to solve the advanced path planning is essential. 
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This paper presents the collision avoidance algorithm of the Bezier curve path using meta-heuristic optimizations.  A procedure 

of collision detection based on matrix analysis is proposed to solve this problem. The collision checking is performed via curve 

points analysis. It needs to check whether any positions of curve points inside the obstacle area. The GA and WOA are applied to 

solve the optimization of the collision avoidance Bezier curve. The performance of both methods in solving the problem of narrow-

passage collision avoidance path optimization is also investigated.   

II. PROBLEM STATEMENTS  

The trajectory is from point R to point S with an obstacle between these two points. The objective is to generate a path as a 

trajectory reference that is free from a collision. A cubic Bezier curve with four control points B0, B1, B2, B3, is used. A start point 

is the first control point B0, and an endpoint is the fourth control point B3. The other two control points, i.e., B1 and B2 are free to 

be determined. The collision-free requirement needs to place those control points in a location such that the cubic Bezier curve is 

outside the obstacle area, as seen in Fig. 1. 

 

 

 

 

 

 
Fig. 1. Trajectory With Obstacle 

 

Mathematically a parametric Bezier curve is defined using Equation (1). 

 

𝑃(𝑡) = ∑ 𝐵𝑖𝐽𝑛,𝑖(𝑡)0 ≤ 𝑡 ≤ 1

𝑛

𝑖=0

 

𝐽𝑛,𝑖(𝑡) = (
𝑛
𝑖

) 𝑡𝑖(1 − 𝑡)𝑛−𝑖 , 𝑎𝑛𝑑 (
𝑛
𝑖

) =
𝑛!

𝑖!(𝑛−1)!
                                                                                               (1) 

 

where 𝐽𝑛,𝑖(𝑡) , t and Bi are the ith nth order Bernstein basis function, a curve parameter, and ith control point, respectively.  

 

To construct an nth degree Bezier curve, n+1 control point must be defined. Thus, n is three for the cubic Bezier curve. Equation 

(2) of the cubic Bezier. 

 
𝑃(𝑡) = 𝐵0𝐽3,0 + 𝐵1𝐽3,1 + 𝐵2𝐽3,2 + 𝐵3𝐽3,3 

          = (1 − 𝑡)3𝐵0 + 3𝑡(1 − 𝑡)2𝐵1 + 3𝑡2(1 − 𝑡)𝐵2 + 𝑡3𝐵3                                                                        (2) 

To avoid collisions, proper selection of control points position is essential to generate the collision-free Bezier curve.  

III. METHODS  

In two-dimensional cases, the obstacles can be modeled as a composition of one or more kinds of the curve. For example, a 

triangle is composed of three straight curves. A rectangular is composed of four straight curves, or it can be a composition of other 

curves such as a polynomial or a trigonometric depending on the geometry of the obstacle object. The collision avoidance algorithm 

needs analysis of curve points position so that the generated path is outside the obstacle area.  

A. Fitness Function 

The fitness function for avoiding collision route planning is the path length that needs to be minimized. The constraint function 

is the position of curve points from the obstacle area. The points in the curve are described by the function P(t) based on Equation 

(3). 

 

𝑃(𝑡) = [𝑥(𝑡) 𝑦(𝑡)]                                                                                                                                        (3) 

 

where x(t) and y(t) are the x-axis and y-axis of the cubic Bezier curve, respectively. 

The minimum length equation for the parametric curve is described in Equation (4). 

 

𝐿 = 𝑚𝑖𝑛 ∫ (√(
𝑑𝑥(𝑡)

𝑑𝑡
)

2

+ (
𝑑𝑦(𝑡)

𝑑𝑡
)

2

)
1

0
𝑑𝑡                                                                                                          (4) 

For the cubic Bezier curve, the objective function is the root integral of the fourth-degree polynomial, which has no closed-form 

solutions. Thus, numerical integration is necessary to solve (4).  
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The optimum path in a maximize form is the highest fitness value in Equation (5). 

 

𝐹1 =
1

𝐿
                                                                                                                                                             (5) 

 

The requirement for obstacle avoidance is the path curve in an obstacle-free area. It needs analysis about the curve point's 

position to ensure that they are outside the obstacle area. This paper defines a function which is called Fobs. It is a function that 

decides whether the curve is a success or a failure. Only the paths outside the obstacle area for all points are the successful 

candidates of route planning. It has only two possible values, which are 1 and 0.  Mathematically, Fobs can be described as an on-

off logic operation using Equation (6). 

 

 If All curve points are in the free area: Fobs =1                                                                                              (6) 

Otherwise:  Fobs =0 

 

Since it depends on the position of the curve points from the obstacle area, the number of Fobs is the same as the number of 

obstacle areas in the environment. For n obstacles in the environment, there exist n Fobss. Thus, the total objective functions can be 

generated using Equation (7). 

 

Ftotal =F1 x Fobs(1) x Fobs(2) x….x Fobs(n)                                                                                                                                            (7) 

 

Variable Fobs describes whether the path is a failure or a success. If any of the paths is a failure, the fitness value becomes zero. 

For example, if three obstacles are composed of the triangle, the rectangular, and the circular obstacles, there are three Fobs values 

associated with the obstacles. Each of them must be evaluated by checking the position of curve points from each obstacle area. 

B. Avoiding Collision method: Curve Points Analysis 

To evaluate the function of Fobs, the avoiding collision algorithm is proposed as follows: 

1.  Model the obstacle area.  It can be circular, rectangular, a polygon, a curve, or a combination of them. It depends on the obstacle 

geometry 

2.  Divide the path, i.e., the cubic Bezier curve, in n points. Those n points are the points in the curve which its distance from the 

obstacle must be analyzed.  

3.  Analysis of each point: 

a. Define a free area and a checking area.  

There are always free areas in the environment that depend on the geometry of the obstacle system.  

b. Evaluate Fvalue for each point in the curve.  

There are two curve point position possibilities. It can be in the free area or the checking area. All points in the free area 

for which the value is one are considered a passing candidate. There are also the checking areas where the point value 

could pass or fail. It depends on the position of curve points from the obstacle.  

The value of each point is described as an on-off logic operation as follows: 

• For the curve point in the free area: 

                        Fvalue=1                                   

• For the curve point in the checking area: 

              If the curve point analysis indicates that the point is outside the obstacle:  Fvalue = 1                                   

              Otherwise: Fvalue =0     

c. Generate an evaluation matrix. 

After the curve points analysis, an evaluation matrix can be generated. The evaluation matrix is the matrix that contains 

the curve points value. If the cubic Bezier curve is divided into 200 points, the evaluation matrix has a matrix size of 

1x200 for one individual.  𝐹𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 = [𝐹𝑣(1) 𝐹𝑣(1) … . 𝐹𝑣(𝑛)] , where Fv (n) is the Fvalue of point n. 

d. Evaluate Fobs  

If the Evaluation matrix =1 : Fobs=1,            

                                          Otherwise:  Fobs =0 

C. Sample Cases: Five Kinds of Obstacles  

The avoiding collision problems for five kinds of obstacles, the rectangular, the circular, the triangular, the area subscribed by 

two lines and the curve, and the area subscribed by two curves, are presented.  

• Rectangular Obstacle 

Fig. 2 refers to the rectangular obstacle case. The analysis is For xp < a or xp > b or  yp <c or yp >d  : Fvalue=1. Otherwise, it is 

the obstacle area, i.e. Fvalue=1                  
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Fig. 2. Rectangular Obstacle 

• Circular Obstacle 

Fig. 3 shows that for the circular obstacle, the checking area is inside rectangular ABCD. In this checking area, the distance of 

point P to the circle center becomes a tool for curve point analysis using Equation (8). 

 

𝛥 = √(𝑥𝑝 − 𝑥 ∗)
2

+ (𝑦𝑝 − 𝑦 ∗)
2
                                                                                                         (8) 

 

Where, (x*, y*) is the circle center. If and only if ∆>R*, then the  Fvalue=1. R* is an obstacle radius. 

 

 

 

 

 

 

 

 

 
 Fig. 3. Circular Obstacle 

• Triangular Obstacle 

Fig. 4 illustrates the triangular obstacle and its geometrical analysis. It shows that θp1 and θp2 can be used as a tool to analyze 

whether the point P is in the free area or the obstacle area. θp1 and θp2  are point angles from x*- axis and x**-axis. ( x*, y*) and 

(x**, y**) are obstacle coordinates that coincide with points A and C. These coordinates are used to simplify the analysis. ∆θ1 is 

the angle between a line AB and a line AC, i.e., |θ 2 - θ1| and ∆θ2 is the angle between a line AC and a line BC, i.e., |θ 4 - θ 3|.  

 

 

 

 

 

 

 

 

 
Fig. 4. Triangular Obstacle 

 

The formula for checking procedure can be written as follow: 

• If |θp1 - θ1 | >∆θ1 or |θp2 - θ4 | > ∆θ2 :                                                                

            Fvalue=1 

• Otherwise Fvalue=0 

where θ1 and θ2 are the angle of line AC from x*-axis and the angle of line BC from x**-axis, respectively.  For the case shows in 

Fig. 4, point P is in the free area since the P position satisfies the condition of |θp2 - θ4| ≥ ∆θ2. 

• Two-Straight Lines and One Curve Obstacle 

Fig. 5 shows the case where the obstacle geometry is composed of two straight lines AB and AC with coordinate A is (x1, y1) 

and coordinate B is (x2, y2). The curve has an equation y1=0.007x3sinx + x. It shows that Δθ, i.e., |θ2–θ1|,   can be used as a tool 

to analyze whether the point P is in the free area or the checking area.  
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Fig. 5. Two-Straight Lines and One Curve Obstacle 

 

The analysis is as follows 

• For the points in the  free area : |θp– θ1|> Δθ or xP <x1 or xP>x2,  thus    Fvalue = 1 

• For the checking area : |θp– θ1|< Δθ and x1 <xP< x2 : 

If yp> y1(xP)  : Fvalue   =1 

Otherwise : Fvalue = 0 

• Two-Curve Obstacle 

Fig. 6 shows an example of an obstacle that is composed of two curves with equations y1=-xsin4x +10 sin x +5 and y2=  

1.5xsin4x – 0.008 x2.  ∆θ can be used as a tool to locate the area of checking points. ∆θ, i.e., |θp– θ1|, is measured from a line 

AB. A(x1, y1) and B(x2, y2) are the intersection points between those curves. The analysis is as follows: 

• For the points in  the free area: xP <x1 or xP>x2 

                    Fvalue = 1 

• For the points in the checking area : 

• For 0 ≤ |θP– θ1| ≤ π  and x1 ≤xP≤ x2 : 

          If yp> y1(xp)  : Fvalue=1                       

                     Otherwise : Fvalue = 0 

• For  π<| θp - θ1 | <2π     and x1 ≤xp≤ x2 : 

          If yp< y2(xP)  : Fvalue=1                       

                     Otherwise  : Fvalue = 0 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6. Two- Curve Obstacle 

IV. META-HEURISTIC OPTIMIZATIONS 

This section presents meta-heuristic optimizations, namely the GA and GWO, that are used to solve the route planning.  

A. Genetic Algorithm 

The GA is a searching method in the computation to obtain solutions to optimization based on Darwin evolution theory [12]. 

The Binary GA needs binary encodings. The chromosome is decoded before an evaluation of the objective function is computed. 

For the cubic Bezier route path problem, the optimization parameters are the second and third control point positions, i.e. B1 (x1,y1) 

and B2 (x2,y2) which must be decoded as chromosomes. Fig. 10 illustrates the GA procedure to solve the Bezier curve collision-

free route planning. 
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Fig. 10. Genetic Algorithm for Solving Collision-Avoidance Path 

• Chromosomes 

Chromosome C is expressed by the string using Equation (9). 

             

               C = [b1  b2  b3 .............bNgene]                                                                                                                                (9) 

The decimal value of “b” elements is determined as Equation (10). 

 

              𝑋𝑑𝑒𝑐𝑖𝑚𝑎𝑙 = ∑ 𝑏𝑖𝑥2𝑖𝑁𝑔𝑒𝑛𝑒−1
𝑖=0                                                                                                                               (10) 

where Ngene is the number of bits. 

 

Fig. 7 illustrates an example of a binary encoded chromosome with Ngene is  6 bits. 

 

 

 

 

 
Fig. 7. Gene Representation 

• Decoding 

The real value of the chromosome is obtained using Equation (11). 

                
12

)( minmax
min

−

−
+=



XX
xXXX decimal

                                                                                                                  ( 11) 

Where, Xmin, Xmax, and λ are the lower and upper bounds of the side constraints, and the length of the binary string, respectively. 

111111 110011 110101 

Gene 1 Gene 2 Gene 3 

Store best individual 

Creating mating pool 

New offspring by applying crossover 

Optimal or good 

solution found? 

Yes 

No 

Set the GA parameter: mutation rate, selection rate, bit string number 

 

Reproduce and ignore few populations 

Evaluate fitness function:  Eq. (4) to (7) 

Perform mutation 

Start 

Random choose of population with control points : B1 and B2 Eq.(2) as chromosomes 

 

Stop 

Decode the chromosome 
  

Compute avoiding collision algorithm (see section IIIB)  
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• Fitness Value 

The fitness of the individual is the fitness function at its chromosome, which has been decoded. This fitness function represents 

the objective of the optimization.  

• Mutation and Crossover 

A crossover is a process of randomly choosing one or more individuals as parents and randomly swapping elements of the 

parents. Fig. 8(a) and Fig. 8(b) illustrate single-point crossover and two points crossovers. 

 
 

 

 

 

 

 

Fig. 8. Crossover 

 

A mutation is a mechanism of randomly change digits in the string, i.e. 0 by 1 and vice versa. Fig. 9 shows an example of this 

process.  
 

 

 

Fig. 9. Mutation 

B. Grey Wolf Optimizer 

The GWO is the meta-heuristic technique inspired by the grey wolves' leadership hierarchy and hunting mechanism [13]. Four 

types of grey wolves are considered, namely alpha, beta, delta, and omega. Fig. 11 presents the flow chart of the GWO procedure 

to solve the Bezier curve collision-free route planning. 

The alpha () is the fittest solution. The second and third best solutions are beta () and delta (δ), respectively. Other candidates’ 

solutions are omega (), where they follow the , , δ wolves during the hunting procedure.  The encircling prey by the grey 

wolves is modeled using Equation (12). 
 

  𝐷 = |𝐶.  𝑋⃗𝑝(𝑡) − 𝑋⃗(𝑡)|                                                                                                                      (12) 

 𝑋⃗𝑝(𝑡 + 1) = | 𝑋⃗𝑝(𝑡) − 𝐴. 𝐷⃗⃗⃗ |     

 

where t,  𝐴,𝐶,  𝑋⃗𝑝, 𝑋⃗ are the current iteration, coefficient vector, coefficient vectors the position, vector of the prey, and the position 

vector of a grey wolf, respectively. Vectors 𝐴, and 𝐶 are defined using Equation (13a), and (13b) 

    𝐴 = 2𝐴.  𝑟1 − 𝑎⃗                                                                                                                                (13a) 

     𝐶 = 2 𝑟2                                                                                                                                          (13b) 

 

𝑎⃗ are linearly decreased from 2 to 0 for iterations using Equation (13c). 

 

𝑎 = 2 − 𝑘 (
2

𝑘𝑚𝑎𝑥
)                                                                                                                                 (13c) 

 

Where, k and kmax are the current iteration and the maximum iteration number, respectively, the variables r1 and r2 are random 

vectors in [0, 1]. Grey wolves recognize the location of prey. Alpha is the leader during the hunting mechanism. Following 

Equations (14) to (16) simulate the hunting behavior of grey wolves 

 

 𝐷⃗⃗⃗𝛼 =  𝐶1.  𝑋⃗𝛼 − 𝑋⃗;  𝐷⃗⃗⃗𝛽 =  𝐶2.  𝑋⃗𝛽 − 𝑋⃗;  𝐷⃗⃗⃗𝛿 =  𝐶3.  𝑋⃗𝛿 − 𝑋⃗;                                                                  (14) 
 

 𝑋⃗1 =  𝑋⃗𝛼 −  𝐴1 . ( 𝐷⃗⃗⃗𝛼);  𝑋⃗2 =  𝑋⃗𝛽 −  𝐴2 . ( 𝐷⃗⃗⃗𝛽);  𝑋⃗3 =  𝑋⃗𝛿 −  𝐴3 . ( 𝐷⃗⃗⃗𝛿)                                              (15) 

 

    𝑋⃗(𝑡 + 1) =
 𝑋⃗⃗1+ 𝑋⃗⃗2+ 𝑋⃗⃗3

3
                                                                                                                                          (16) 

 

where  𝑋⃗𝛼,  𝑋⃗𝛽, and  𝑋⃗𝛿 are the positions of alpha wolf, beta wolf, and delta wolf, respectively. 
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Fig. 11. Grey Wolf Optimizer Procedure 

 

𝐴 is generated randomly within [-2a, 2a]. a is decreased from 2 to 0. 𝐶  contains random values within [0, 2]. The positions of 

the alpha wolf, the beta wolf, and the delta wolf are updated based on the fitness value following the definition that the alpha, the 

beta, and the delta are the fittest search agent, the second fittest search agent, and the third fittest search agent, respectively. It 

needs to check the current fitness value. In the case that the current fitness value is higher than the previous alpha, then the alpha 

wolf is replaced by the new one. The beta and delta wolves are updated in a similar procedure. Updating the variables: a, A, and c 

are obtained by using Equation (13a, 13b, 13c). In this mechanism, r1 and r2 need to be generated three times to obtained the values 

of ( 𝐴1,  𝐶1), ( 𝐴2,  𝐶2), and ( 𝐴3,  𝐶3)  and to calculate the values of  𝑋⃗1,  𝑋⃗2, and  𝑋⃗2 as Equation (15). The remaining search agents 

are updated following Equation (16). 

V. RESULT AND DISCUSSION 

Numerical experiments in MATLAB environment are performed using 20 individuals in the population using 700 curve points. 

A Simpson’s rule is applied as numerical integration to solve F1. The computation uses 25 iteration numbers.  For the GA, the 

mutation rate and selection rate are chosen to be 0.1 and 0.5, respectively. The number of bits is selected to be 10.  

Find X, X, Xδ based on the fitness value 

Yes 

No 

Initialization of population with B1 and B2 using Eq.(2) as the search agent 

 

Calculate fitness function: (4) to (7), of each search agent  

Calculate fitness function: Eq.(4) to (7), of each search agent 

Initialization of , , δ types of grey wolves 

 

Iter<itermax 

Update remaining search agents using Eq.(16):  

𝑋⃗(𝑡 + 1) =
 𝑋⃗1 +  𝑋⃗2 +  𝑋⃗3

3
 

Iter=iter+1 

Display optimum result 

Start 

Stop 

Compute avoiding collision algorithm (see section IIIB)  

Update A, C, a: Eq.(13a, 13b, 13c) 

Update X, X , Xδ based on the fitness value 

𝑋⃗(𝑡 + 1) =
 𝑋⃗1 +  𝑋⃗2 +  𝑋⃗3

3
 

Calculate A, C, a: Eq.(13a) to (13c) 
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This research uses synthetic data to generate the obstacle environment and the route path using MATLAB software. The 

programming code is written in the m-file. The synthetic data approach permits an exploration of unusual configurations, unique 

system behavior, and specific parameter [17]. The synthetic data methodology has been widely applied in the robotics field. Using 

MATLAB software, the synthetic data has been integrated into the comprehensive systems in solving adaptive trajectory planning 

[18], Unmanned Aerial Vehicle (UAV) coordination [19], Wide Area Aerial surveillance [17], and route choice problem in 

transportation science [20] 

A. Triangle Obstacle  

Table I presents the results of the GA and GWO for route planning from the start point (5.6 -0.5) and the endpoint (3.5 4) in a 

triangle obstacle environment. It shows that the GWO has better performance than that of the GA since the GWO has the highest 

fitness value, i.e., 0.01614. As expressed in Equation (5), the minimum length problem has been converted to the maximization 

problem so that the better performance can be determined by the highest value of the fitness function. Fig. 12a shows the fitness 

value evolution of the GA and the GWO. It can be observed that within 25 generations, the GWO evolve beyond the GA fitness 

graph. Fig. 12b and 12c illustrate the collision-free Bezier route obtained from the GA and the GWO, respectively. The results of 

route planning are in the form of control points (B1x, B1y) and (B1x, B1y) (see Table I), representing the position of lines that determine 

the Bezier curve geometry. Thus, different values of these control points result in different shapes of the collision-free Bezier 

curve. Meta-heuristic optimizations search these control points in such a way so that the route path is feasible, i.e., collision-free. 

These lines are illustrated as the straight line in the black color in Fig. 12b and 12c. The collision-free path, which is illustrated in 

the blue color in Figs. 12b and 12c are then can be computed by using Equation (2). 

 
TABLE I 

RESULTS OF TRIANGLE OBSTACLE 

Method  Fitness 
Control points 

B1x B1y B2x B2y 

GA 0.15987 3.8807 0.2346 1.6129  0.41056 

GWO 0.1614 1.3488   0.9339 3.5406 0.8569 

 

 

 

 

 

 

 

 

 

 

 

 

 
                                             (a)                                                                                (b)                                                                          (c) 

Fig. 12. Result Of Triangle Obstacle (A) Fitness Evolution (B) Path from GA (B) Path From GWO 

B. One Curve and Two-Line Curve  

Table II presents the results of the GA and GWO for route planning from the start point (9, 0) and the endpoint (8, 12) with an 

obstacle that formed from two straight-line curves. The curve has the equation Y =0.007 x3 sin x + 0.001x2 cos x + x.   It shows 

that the GWO has better performance than that of the GA since it has the highest fitness value, i.e., 0.061327. Fig.13a shows the 

fitness value evolution of the GA and the GWO. The same as in the triangular obstacle, the GWO fitness evolve beyond the GA 

fitness graph.  
TABLE II 

RESULTS OF ONE CURVE-TWO-LINE CURVE 

Method  Fitness 
Control points 

B1x B1y B2x B2y 

GA 0.056481 16.4809  0.449658    12.7273  14.8387 

 

GWO 0.061327 8.9254 0.53751       -2.2413        1.6396      
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Fig. 13a and 13b illustrate the collision-free Bezier route obtained from GA and GWO result for this obstacle environment. It can 

be observed that in this obstacle geometry, the generated paths obtained from the GA and the GWO are significantly different 

because the values of Bezier curve control points obtained from the GA and the PSO (see Table II) are in the opposite direction.  
       

 

 

 

 

 

 

                                        (a)                                                                            (b)                                                                                            (c) 

 

Fig. 13. Result Of Two Straight Line-One Curve Obstacle (A) Fitness Evolution (B) Path From GA  (B) Path From GWO 

C. Two-Curve Obstacle  

Table III presents the results of the GA and GWO for route planning from the start point (13 -2) and the endpoint (13 10) with 

obstacle formed of two curves   y1 = -x sin4x+10 sin x +5 and   y2 = 1.5x sin4 x – 0.008 x2.  The previous cases show that the GWO 

has the highest fitness value, i.e., 0.08071. Fig. 14a shows the fitness value evolution of the GA and the GWO. The GWO fitness 

again evolves beyond the GA fitness graph. Fig. 14b and 14c illustrate the collision-free Bezier route obtained from GA and GWO 

results for such a two-curve obstacle environment. The same as in the case of one curve two-line obstacle, the generated paths of 

the GA and GWO are significantly different. Visualization graphs in Figs. 14b and 14c are also clearly indicated that the length of 

the path from the GWO is lower than that of the GA.  

 
TABLE III 

RESULTS OF TWO-CURVE OBSTACLE 

Method  Fitness 
Control points 

B1x B1y B2x B2y 

GA 0.079292 12.1017   -0.762463  16.911 5.14174 

GWO 0.08071 11.347      -0.89891         11.96        1.2131  

 

 

 

  

   

 

 

 

 

 

 

 
                                               (a)                                                                               (b)                                                                                (c) 

Fig. 14. Result Of Two-Curve Obstacle (A) Fitness Evolution (B) Path from GA (B) Path From GWO 

D. Combination Obstacle and Narrow-Passage Collision Avoidances 

Table IV presents the results of the GA and GWO for route planning from the start point (1.5 4) and the endpoint (10 10) for 

combination obstacles (see Fig. 15). As in the previous cases, this table shows that the GWO has better performance than that of 

the GA, where the GWO best fitness value is higher, i.e., 0.071091, than that of the GA, i.e., 0.064472. The result of the best 

solution is confirmed by the fitness evolution graph, as shown in Fig. 15a. Applying the route planning result, i.e., Bezier curve 

control points (see TABLE IV), the collision-free Bezier routes are illustrated in Fig. 15b and 15c for the GA and the GWO, 

respectively, combination obstacles environment.  

The route planning is then modified by changing the starting point to R(4, 0). This new route planning conveys the narrow-

passage area. Motion planning involving the narrow-passage problem has been an important topic but a very challenging 

computational problem [14-16]. Thus, investigating both meta-heuristic optimization methods in solving this type of route planning 



International Journal of Artificial Intelligence & Robotics (IJAIR)                                                              E - ISSN : 2686-6269 

Vol.3, No.1, 2021, pp.1-14     
11 

 

DOI: 10.25139/ijair.v3i1.3821 

is essential.  

Table V presents the GA and GWO for this route planning which contains the narrow passage area. Unlike previous cases, it 

shows that the GA has better performance in finding the optimal collision-free route than that of the GWO, where the GA exhibits 

the highest fitness value, i.e., 0.0561, compared with the best fitness value of the GWO, i.e., 0.053024. Applying the results of the 

control points in Table IV to Equation (2), Fig. 16a and 16b illustrate the collision-free Bezier route of the GA and the GWO, 

respectively, for this narrow passage route planning.  

 

 

  

 

 

 

 

 

 

 

 
                                               (a)                                                     (b)                                                       (c) 

Fig. 15. Result of obstacle combination, case 1  (a) Fitness evolution (b) path from GA  (c) path from GWO 

 

 

 

                (a)                                                                                         (b)   

 

 

 

 

 

 

 

 

 
Fig. 16. Result of obstacle combination, case 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 17. Fitness value evolution (a) case 1 (b) case 2:  involve a narrow passage 

 
TABLE IV 

RESULTS OF COMBINATION OBSTACLE, CASE 1 

Method  Fitness 
Control points 

B1x B1y B2x B2y 

GA 0.064472     0.579014       5.29616       12.5145       18.2526 

GWO 0.071091 0.22883        2.9223        8.2377        17.273 
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TABLE V 

RESULTS OF COMBINATION OBSTACLE, CASE 2 (NARROW-PASSAGE) 

Method  Fitness 
Control points 

B1x B1y B2x B2y 

GA 0.0561 1.597 3.812 16.4 -6.92897 

GWO 0.053024 20 1.2472        11.153        1.3631      

 

For the narrow passage route planning, both the GA and the GWO encounter the problem of escaping from the death fitness 

value. As presented in the methodology section, the penalty method is applied. The fitness is set to be a null value when there is a 

route point inside the obstacles area. The GA and GWO possibly have null fitness values at the beginning of the computation, and 

they need to escape from this null value. Fig. 17b shows the fitness evolution of both GA and GWO during the narrow passage 

route planning computation. As a comparison, Fig. 17a shows the fitness evolution of both methods for case 1, where it does not 

involve the narrow passage area. Without a narrow passage area, both methods do not face the null fitness value problem. 

E. Comparison with polynomial-based path 

Using the cubic Bezier curve, there are only four unknown parameters, which are the first Bezier curve control point: B1(x1, y1) 

and the second Bezier curve control point: B1 (x2, y2), to be searched by the meta-heuristic algorithm. The results have shown that 

the cubic Bezier curve incorporating the meta-heuristic optimization can be used to solve the narrow passage problem. This section 

investigates the behavior of a polynomial-based path in solving the presented collision avoidance problem. The polynomial 

function has been widely used in the path planning of arm robot manipulators when the trajectories are generated in the joint space 

[21].  

The cases presented in this paper are different with arm robot manipulators since the generated trajectories of the present study 

are in the cartesian space/coordinate. However, the behavior of the polynomial function as the collision-free path is very interesting 

to be studied because the same with the Bezier curve, the polynomial function has the smoothness property, which is very important 

in path planning [22]. A quadrinomial [21], which is polynomial degree fourth, is applied as the path in cartesian coordinate in the 

following: 

 

𝑦(𝑥) = 𝑎4𝑥4 + 𝑎3𝑥3 + 𝑎2𝑥2 + 𝑎1𝑥 + 𝑎0                                                                                                     (17) 

 

The boundary conditions of initial coordinates and final coordinates yield: 

 

𝑎0 = 𝑦0 + 𝑎4𝑥0
4 + 𝑎3𝑥3

3 + 𝑎2𝑥0
2 + 𝑎1𝑥0 

𝑎1 =
𝑦𝑓−𝑦0+𝑎4(𝑥𝑓

4−𝑥0
4)+𝑎3(𝑥𝑓

3−𝑥0
3)+𝑎2(𝑥𝑓

2−𝑥0
2)

𝑥𝑓−𝑥0
                                                                                             (18) 

 

where (x, y), (x0, y0), (xf, yf), and an are the cartesian coordinates of the path, the initial coordinates, the final coordinates, and nth 

polynomial coefficient, respectively.  The path length of y=f(x) is in the following:  

𝐿 = 𝑚𝑖𝑛 ∫ (√1 + (
𝑑𝑦(𝑥)

𝑑𝑥
)

2

)
𝑥𝑓

𝑥0
𝑑𝑥                                                                                                                  (19) 

 

Variable (x0, y0) and (xf, yf) are known parameters as the departure point and the destination point, respectively. Using the above 

equations, there are three searching parameters, which are the fourth polynomial coefficient: 𝑎4, third polynomial coefficient: 𝑎3, 

and second polynomial coefficient: 𝑎2. Using the GA and the GWO, the computation of the polynomial-based path is similar to 

the Bezier curve with L in Equation (4) is replaced by Equation (19) because the route is now in the form of y=f(x). The only 

difference is the generated path, which is now using the polynomial-based function as described in the above equations.  

The combination obstacle, namely case 1, presented in the previous section is used as the path planning problem. Table VI 

presents the results of the GA and the GWO. As in the Bezier curve-based path, the GWO exhibits the highest fitness value, i.e 

0.074111.  
TABLE VI 

RESULTS OF CASE 1, COMBINATION OBSTACLES 

Method  Fitness [𝑎4   𝑎3   𝑎2] 

GA 0.070343 [-0.00394    0.022641     0.36347] 

GWO 0.074111 [-0.002396    0.013633     0.12585] 

 

Fig. 18a illustrates the detail of the fitness value evolution during the computation. Fig. 18b shows the polynomial paths obtained 

from the GA and the GWO. The path results do not look too much different with Figs. 15b and 15c; however, the GA and the 
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GWO have failed in finding a collision-free polynomial path for the triangular case, as shown in Fig. 19. Although the obstacle is 

only one piece of triangular geometry; however, using one segment of the polynomial function is not enough to generate the 

collision-free path. Compared to the cubic Bezier curve, the polynomial function y=f(x) is not agile enough to be used as the 

collision-free route path.     

 

  

  

 

 

 

 

 

 

 
 

                                                                                  (a)                                                                                                (b) 

 

Fig. 18 Result of polynomial-based of combination obstacle, case 1 (a) Fitness evolution (b) path from GA  and GWO 

 

 

 

 

 

 

 

 

 

 

 
Fig. 19 Result Of Polynomial-Based Of Triangular Obstacle (Failure). The Polynomial-Based Path Is Not Agile Enough.  

 

The results in this paper have shown that, in general, both the GA and GWO have shown good capability in finding the collision-

free route applying the developed collision-avoidance algorithm. Without the narrow passage problem, the GWO has shown a 

good performance than that of the GA, while for the narrow-passage route planning, the GA has outperformed the GWO. The good 

performance of the GA in escaping from null fitness value is probably due to the mutation procedure. This research uses a quite 

high mutation rate, i.e., 0.1, where it can further explore the searching capability of the GA. Because of the capability of the GA 

in solving the narrow passage problem but it less performed than the GWO for the route planning without the narrow passage 

problem, considering to hybrid between GA and the GWO in solving the advanced planning is also very interesting to be conducted 

for future research. Investigating other meta-heuristic methods in solving the narrow-passage route planning is also very important 

to be conducted for future research. Because the results in this paper have shown that one segment of polynomial-based function 

is less agile for the collision-free route path, it is suggested to study the application of piecewise polynomial functions, for example, 

the B-spline curve, incorporating the meta-heuristic optimization for the future study. For future research, the developed collision 

avoidance algorithm can be further implemented to solve the motion planning of an unmanned aerial vehicle and manufacturing 

path of the industrial manipulator; however, the advanced path planning will require additional constraints to be considered. For 

example, the other constraint is the maximum curvature for the UAV path planning as described in [23, 24].  

VI. CONCLUSION 

The collision avoidance Bezier curve optimization has been presented. The avoiding collision algorithm based on curve point 

analysis was developed. The Bezier control points needed to search in such a way so that the generated route has the minimum 

length while it was also collision-free. Meta-heuristic optimizations, which were the GA and the GWO, have been applied to solve 

this route optimization problem. Since the problem has been converted to the maximization problem, the measurement of the best 

performance was based on the highest fitness value. Results showed that the GWO, in general, has shown better performance than 

that of the GA, where the GWO exhibits the highest fitness value. However, the GA has shown better performance for the narrow 

passage problem than that of the GWO. They are considering that the GA has good performance in solving the narrow-passage 

path planning. At the same time, the GWO outperformed the GA for the case without escaping from the death fitness value. 

Implementing hybrid GA-GWO to solve the advanced path planning is recommended for future research.    
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